adjoint associativity - définition. Qu'est-ce que adjoint associativity
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est adjoint associativity - définition

CONTINUOUS DUAL OF A HERMITIAN OPERATOR
Adjoint operator; Hermitian conjugate; Adjoint of an operator; Adjoint linear transformation; Adjoint problem; Hermitian conjugation; Adjoint (operator theory)

Operator associativity         
PROPERTY THAT DETERMINES HOW OPERATORS OF THE SAME PRECEDENCE ARE GROUPED IN THE ABSENCE OF PARENTHESES
Right associative operator; Right associative; Left-associative; Right-associative; Left associative; Left associativity; Right associativity
In programming language theory, the associativity of an operator is a property that determines how operators of the same precedence are grouped in the absence of parentheses. If an operand is both preceded and followed by operators (for example, ^ 3 ^), and those operators have equal precedence, then the operand may be used as input to two different operations (i.
Adjoint representation         
REPRESENTATION OF A LIE GROUP ON ITS LIE ALGEBRA
Adjoint representation of a Lie algebra; Adjoint map; Adjoint action; Adjoint Representation; Adjoint representation of a Lie group; Adjoint endomorphism; Adjoint group
In mathematics, the adjoint representation (or adjoint action) of a Lie group G is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if G is GL(n, \mathbb{R}), the Lie group of real n-by-n invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible n-by-n matrix g to an endomorphism of the vector space of all linear transformations of \mathbb{R}^n defined by: x \mapsto g x g^{-1} .
Adjoint functors         
  • 350px
  • Here the counit is a universal morphism.
  • The existence of the unit, a universal morphism, can prove the existence of an adjunction.
  • 400px
  • String diagram for adjunction.
RELATIONSHIP THAT TWO FUNCTORS MAY HAVE
Adjoint functor; Right adjoint; Left adjoint; Adjointness; Left-adjoint; Right-adjoint; Adjoint functor theorem; Adjoint pair; Freyd's adjoint functor theorem; Unit (category theory); Unit of adjunction; Adjoint equivalance; Counit (category theory); ⊣; Freyd adjoint functor theorem; Adjunction (category theory); Draft:Adjoint functor theorem; Draft:Formal criteria for adjunction; Adjunction map; Adjoint relation
In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint.

Wikipédia

Hermitian adjoint

In mathematics, specifically in operator theory, each linear operator A {\displaystyle A} on a Euclidean vector space defines a Hermitian adjoint (or adjoint) operator A {\displaystyle A^{*}} on that space according to the rule

A x , y = x , A y , {\displaystyle \langle Ax,y\rangle =\langle x,A^{*}y\rangle ,}

where , {\displaystyle \langle \cdot ,\cdot \rangle } is the inner product on the vector space.

The adjoint may also be called the Hermitian conjugate or simply the Hermitian after Charles Hermite. It is often denoted by A in fields like physics, especially when used in conjunction with bra–ket notation in quantum mechanics. In finite dimensions where operators are represented by matrices, the Hermitian adjoint is given by the conjugate transpose (also known as the Hermitian transpose).

The above definition of an adjoint operator extends verbatim to bounded linear operators on Hilbert spaces H {\displaystyle H} . The definition has been further extended to include unbounded densely defined operators whose domain is topologically dense in - but not necessarily equal to - H . {\displaystyle H.}